Извиняюсь за много букаф, классная статья.
Согласно доктринам физики ничто не может премещаться быстрее скорости света, но в ходе экспериментов выяснилось, что состояние в "запутанной" паре частиц передаётся мгновенно... читаем во что всё это выливается (прим Ш)
Жуткое квантовое действие» может удерживать Вселенную от распада
_Брайан Свингл был аспирантом, изучал физику веществ в Массачусетском технологическом институте, когда вдруг решил взять несколько уроков в теории струн, чтобы подкрепить свое образование — как он вспоминает, «потому что почему бы и нет?» — хотя никогда особо не интересовался этой областью. По мере углубления в детали Свингл начал подмечать неожиданные сходства подхода теории струн к физике черных дыр и квантовой гравитации с его собственной работой, в которой он использовал так называемые тензорные сети для прогнозирования свойств экзотических материалов.
«Я осознал, что происходит что-то глубокое», — говорит он.
_Тензоры возникают по всей физике — это простые математические объекты, которые могут представлять несколько чисел одновременно. К примеру, вектор скорости — простой тензор: он захватывает значения скорости и направления движения. Более сложные тензоры, связанные в сети, можно использовать для упрощения расчетов комплексных систем, состоящих из многих различных взаимодействующих частей, в том числе и сложного взаимодействия огромного числа субатомных частиц, составляющих материю.
Свингл — один из растущего числа физиков, которые видят ценность в адаптации тензорных сетей к космологии. Среди прочих преимуществ она может помочь решить продолжающийся спор о природе самого пространства-времени. По словам Джона Прескилла, профессора теоретической физики в Калифорнийском технологическом институте в Пасадене, многие физики заподозрили глубокую связь между квантовой запутанностью — «жутким действием на расстоянии», которое так невзлюбил Альберт Эйнштейн — и геометрией пространства-времени на мельчайших масштабах, которую физик Джон Уилер первым описал как пузырящуюся пену шесть десятков лет назад.
_«Если вы будете изучать геометрию в масштабах, приближенных к планковской длине, — самой короткой из всех возможных, — она будет все меньше и меньше похожа на пространство-время, — говорит Прескилл. — На самом деле, это будет уже не геометрия. Это что-то другое, возникающее из чего-то более фундаментального».
Физики продолжают бороться с этой запутанной проблемой, связанной с фундаментальной картиной, но очень подозревают, что она связана с квантовой информацией. «Когда мы говорим о том, что информация кодируется, мы имеем в виду то, что можем разбить систему на части, и будет некоторая корреляция между этими частями, так что можно будет узнать что-то об одной части, наблюдая другую», — говорит Прескилл. Такова суть запутанности.
Мы привыкли говорить о «ткани» пространства-времени, метафоре, которая вызывает образ соткания нитей в гладкое и продолжительное единое целое. Эта нить принципиально квантовая. «Запутанность — это ткань пространства-времени, — говорит Свингл, ныне ученый Стэнфордского университета. — Это нить, которая связывает систему воедино, делает коллективные свойства отличными от индивидуальных. Но чтобы увидеть интересное коллективное поведение на самом деле, вы должны понимать, как распределяется запутанность».
_Тензорные сети предоставляют математический инструмент, который позволяет это сделать. С такой точки зрения, пространство-время возникает как сеть взаимосвязанных узлов комплексной сети с отдельными кусочками квантовой информации, связанных вместе подобно LEGO. Запутанность — это клей, который удерживает сеть вместе. Если мы хотим понять пространство-время, нам нужно сперва подумать геометрически о запутанности, поскольку именно этим способом информация закодирована в бесчисленном количестве взаимодействующих узлов системы.
Много тел, одна сеть
Смоделировать сложную квантовую систему — не просто подвиг; даже классическая система с более чем двумя взаимодействующими частями представляется проблемой. Когда Исаак Ньютон опубликовал свои «Начала» в 1687 году, одна из многих тем, которых он коснулся, стала известна как «задача трех тел». Это относительно простой вопрос: рассчитать движение двух объектов вроде Земли и Солнца, принимая во внимание эффекты их взаимного гравитационного притяжения. Тем не менее если добавить третье тело вроде Луны, задача становится колоссально сложной, проблема с относительно прямым и конкретным решением становится хаотичной, где долгосрочное прогнозирование требует мощных компьютеров для моделирования приблизительной эволюции системы. Короче, чем больше объектов в системе, тем сложнее ее вычислить, и эта сложность увеличивается линейно, по крайней мере в классической физике.
Теперь представьте квантовую систему с многими миллиардами атомов, все из которых взаимодействуют друг с другом с соответствии со сложными квантовыми уравнениями. На таких масштабах сложность возрастает экспоненциально с числом частиц в системе, так что подход грубой вычислительной силы не сработает.
_Представьте себе золотой самородок. Он состоит из множества миллиардов атомов, которые взаимодействуют между собой. Из этих взаимодействий вытекают различные свойства металла, цвет, прочность или проводимость. «Атомы — крошечные квантово-механические штучки, вы кладете атомы вместе и происходят классненькие новые вещички», — говорит Свингл. Но на таких масштабах применяются правила квантовой механики. Физикам нужно точно рассчитать волновую функцию этого самородка, которая описывает состояние системы. И эта волновая функция — многоголовый дракон экспоненциальной сложности.
Даже если в вашем самородке будет всего 100 атомов, каждый с квантовым «спином», который может быть либо верхним, либо нижним, общее число возможных состояний составляет 2^100, или миллион триллионов триллионов. С каждым добавленным атомом, проблема становится неизмеримо хуже. (И будет еще хуже, если вы решите заботливо описать что-нибудь в дополнение к спинам атомов, согласно любой реалистичной модели). «Если взять всю видимую Вселенную и заполнить ее нашим лучшим материалом для хранения, сделать лучший из возможных жестких дисков, вы можете сохранить состояние всего 300 спинов, — говорит Свингл. — Эта информация присутствует, но она не про физиков. Никто никогда не измерял все эти числа».
_Тензорные сети позволяют физикам сжимать всю информацию, содержащуюся в волновой функции, и обращаться только к тем свойства, которые физики могут измерить экспериментально: как отдельно взятый материал искривляет свет, например, или как он поглощает звук, или насколько хорошо проводит электричество. Тензор — это своего рода «черный ящик», который принимает один набор чисел и выдает совершенно другой.
Таким образом, можно подключить простую волновую функцию — множества невзаимодействующих электронов, каждый в нижайшем энергетическом состоянии — и пропускать тензоры в системе снова и снова, пока процесс не произведет волновую функцию крупной и сложной системы, миллиарда взаимодействующих атомов в самородке золота. Результатом будет довольно простая диаграмма, изображающая этот сложный слиток золота, новшество сродни диаграммам Фейнмана, которые упростили процесс представления взаимодействия частиц в середине 20 века. У тензорной сети есть геометрия, как у пространства-времени.
Ключом к достижению такого упрощения является принцип под названием «локальность». Любой отдельный электрон взаимодействует только с ближайшими соседями-электронами. Запутывание множества электронов с его соседями производит серию «узлов» в сети. Эти узлы представлены тензорами, а запутанность связывает их вместе. Все эти соединенные узлы составляют сеть. Сложный расчет становится проще визуализировать. Иногда он даже сводится к простой проблеме подсчета.
_Есть много разных видов тензорных сетей, но среди наиболее полезных есть одна, известная под акронимом MERA (анзац перенормировки многомасштабной запутанности). Вот как она работает в принципе: представьте одномерную линию электронов. Замените восемь отдельных электронов — A, B, C, D, E, F, G, H — основными единицами квантовой информации (кубитами) и запутайте их с ближайшими соседями, чтобы образовать связи. A запутывается с B, C запутывается с D, E запутывается с F, G запутывается с H. Это поднимает сеть на уровень выше. Теперь запутываем AB с CD, EF с GH, еще один уровень. Наконец, ABCD связывается с EFGH, образуя самый высший слой. «В некотором смысле, можно сказать, что запутывание используется для построения многочлена волновой функции», — писал Роман Орус, физик из Университета Иоганна Гутенберга в Германии.
Почему некоторые физики так взволнованы потенциалом тензорных сетей — особенно MERA — в свете квантовой гравитации? Потому что эти сети демонстрируют, как одна геометрическая структура может выйти из сложных взаимодействий многих объектов. И Свингл (наряду с другими) надеется воспользоваться этой вытекающей геометрией и показать, как она может объяснить возникновения гладкого непрерывного пространства-времени из дискретных битов квантовой информации.
Границы пространства-времени
Физики кондесированных сред случайно нашли возникающее дополнительное измерение, когда разработали тензорные сети: эта техника дает двумерную систему из одного измерения. Между тем теоретики гравитации начали вычитать измерение — из трех в два — с развитием так называемого голографического принципа. Можно ли объединить эти два понятия, чтобы сформировать глубокое понимание пространства-времени?
В 1970-х годах, физик Яаков Бекенштейн показал, что информация о содержании черной дыры кодируется в ее двумерной зоне («граница»), а не в трехмерной («объем»). Двадцать лет спустя Леонард Сасскинд и Герард т’Хоофт расширили эту идею на всю вселенную, уподобив ее голограмме: наша трехмерная вселенная во всей ее красе вытекает из двумерного «исходного кода». В 1997 году Хуан Малдасена нашел конкретные примеры голографии в действии, демонстрирующие, что игрушечная модель, описывающая плоское пространство без гравитации, эквивалентна описанию седловидного пространства с гравитацией. Эту связь физики назвали дуальностью.
_Марк Ван Раамсдонк, струнный теоретик из Университета Британской Колумбии в Ванкувере, сравнивает эту голографическую идею с двумерным компьютерным чипом, который содержит код для создания трехмерного виртуального мира видеоигры. Мы живем в этом трехмерном игровом пространстве. В некотором смысле наше пространство иллюзорно, эфемерная картина, повисшая в тонком воздухе. Но как подчеркивает Ван Раамсдонк, «есть еще реальная физическая вещь в вашем компьютере, которая хранит всю эту информацию».
Эта идея получила широкое признание среди физиков-теоретик, но они по-прежнему борются с проблемой: как именно низшее измерение может хранить информацию о геометрии пространства-времени. Камнем преткновения является то, что наш метафорический чип памяти должен быть чем-то вроде квантового компьютера, где традиционные нули и единицы, используемые для кодирования информации, заменяются кубитами, способными быть нулями, единицами и всем, что между, одновременно. Эти кубиты должны были соединиться с помощью запутывания — в результате которого состояние одного кубита определяется состоянием его соседа — до того, как мог быть закодирован реалистичный трехмерный мир.
_Запутанность кажется фундаментальной для существования пространства-времени. К такому выводу еще в 2006 году пришла пара ученых: Шинсей Рю (Университет Иллинойса) и Тадаши Такаянаги (Университет Киото), получившие премию New Horizons 2015 по физике за эту работу. «Идея была в том, что способ, которым была закодирована геометрия пространства-времени, имеет много общего с тем, как различные части нашего чипа памяти запутывались друг с другом», — объясняет Ван Раамсдонк.
Вдохновленный их работами, а также работой Малдасены, в 2010 году Ван Раамсдонк предложил мысленный эксперимент, демонстрирующий критическую роль запутанности в формировании пространства-времени, размышляя над тем, что может произойти, если разрезать чип памяти на два и затем удалить запутанности между кубитами в противоположных половинах. Он обнаружил, что пространство-время начнет рвать себя на части, подобно тому, как растягивание жевательной резинки в разные концы образует рваные дыры в центре. Продолжая разделять этот чип памяти на меньшие и меньше части, можно разорвать пространство-время, пока не останутся только крошечные индивидуальные фрагменты, не связанные друг с другом.
_«Если вы уберете запутанность, ваше пространство-время развалится на части, — говорит Ван Раамсдонк. — Аналогичным образом, если вы хотите построить пространство-время, вам нужно начать с запутывания кубитов вместе определенным образом».
Объедините эти идеи с работой Свингла по соединению запутанной структуры пространства-времени и голографического принципа с тензорными сетями, и еще один важный кусок головоломки встанет на место. Искривленное пространство-время довольно естественно вытекает из запутанности в тензорных сетях через голографичность. «Пространство-время — это геометрическая репрезентация этой квантовой информации», — говорит Ван Раамсдонк.
И на что похожа эта геометрия? В случае с седлообразным пространством-временем Малдасены, она похожа на одну из фигур цикла «Предел — круг» Маурица Корнелиса Эшера конца 50-х – начала 60-х. Эшер долгое время интересовался порядком и симметрией, включая эти математические идеи в свое искусство.
_Его ксилография «Предел — круг» — это иллюстрации гиперболической геометрии: отрицательно искривленные пространства, представленные в двух измерениях в виде искаженного диска, подобно тому как плоский глобус Земли на двумерной карте искажает континенты. Свингл утверждает, что диаграмммы тензорных сетей имеют поразительное сходство с серией «Предел — круг».
На сегодняшний день тензорный анализ был ограничен моделями пространства-времени вроде малдасеновской, которые не описывают вселенную, в которой мы живем — вселенную неседлообразной формы, расширение которой ускоряется. Физики могут только делать переводы между двумя моделями в некоторых случаях. В идеале им хотелось бы заполучить универсальный словарь. И они хотели бы делать точные переводы, а не приближенные.
_«Мы в забавной ситуации с этими дуальностями, поскольку все соглашаются, мол, да, это важно, но никто не знает, как их переводить, — говорит Прескилл. — Возможно, подход с тензорной сетью позволит зайти дальше».
За прошедший год Свингл и Ван Раамсдонк проделали много совместной работы, чтобы вывести свой круг обзора за пределы статической картинки пространства-времени и исследовать его динамику: как пространство-время меняется со временем и как его кривизна реагирует на эти изменения. Пока что они сумели вывести уравнения Эйнштейна, в частности принцип эквивалентности — доказательство того, что динамика пространства-времени, как и его геометрия, вытекают из запутанных кубитов. Это многообещающее начало.
_«Вопрос: что такое пространство-время? Он звучит как совершенно философский вопрос, — говорит Ван Раамсдонк. — Однако он вполне конкретный, и тот факт, что пространство-время можно рассчитать, совершенно удивляет».